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INTRODUCTION 

Modem liquid chromatography is a rapidly growing field 

within analytical chemistry. New instrumentation has taken a 

lot of the blood, Tswett, and tears out of the experimental 

procedures and has greatly extended the scope of liquid chro­

matography. However, use of modern instrumentation has led 

to the need for new column packings which operate without loss 

of efficiency at high pressures. Typically, in liquid-liquid 

chromatography, the stationary liquid phase will bleed off the 

inert support when eluent under pressure is forced through the 

column. Besides the obvious problem of loss of column effi­

ciency, there is the problem of interference with detection. 

One solution to the problem of phase bleeding has been the 

development of bonded stationary phases in which the station­

ary liquid is chemically bound to an inert support (1). 

Another possible solution, especially for the separation of 

metal ions, seems to be resins with complex- or chelate-

forming functional groups bound directly to a polymeric 

matrix. The evaluation of one such resin having a-hydroxy 

oxime groups bound to a polystyrene-divinylbenzene matrix is 

reported here. 

Complex-forming resins have some advantages over conven­

tional ion exchange resins in that (1) complex-forming resins 

are generally more selective than ion exchange resins because 

the mode of interaction with metal ions includes formation of 
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coordinate as well as ionic bonds (2), and (2) complex-forming 

resins can be used in solutions having high concentrations of 

salt, whereas with ion exchange resins, the mass action effect 

of large amounts of salt renders them ineffective. 

a-Benzoinoxime has long been known to be a selective re­

agent for copper (3) and for molybdenum (4). Recently, two 

aliphatic a-hydroxy oximes have been used to separate copper 

(II) and molybdenum(VI) from other metal ions (5). The demon­

strated selectivity of a-hydroxy oximes for copper and molyb­

denum, coupled with the straightforward synthetic route to a 

resin containing that group, is the basis for the choice of 

that resin for synthesis and evaluation. 

The resin is synthesized by reacting XAD-2 a macroporous, 

polystyrene-divinylbenzene copolymer, with anhydrous phenyl-

glyoxal and anhydrous aluminum trichloride in carbon disulfide. 

The product is oximated with hydroxylamine hydrochloride giv­

ing a resin with the structure 

where Res represents the polystyrene-divinylbenzene matrix. 

The resin is found to sorb copper(II) and molybdenum(VI) 

under conditions similar to those found with other a-hydroxy 

oximes, i.e., copper(II) is sorbed from solutions having a pH 

of 5 or more, and molybdenum(VI) is sorbed -over the pH range 

1 to 4. Although several metals are found to interfere with 

OH NOH 
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the determination of copper or molybdenum, good results are 

obtained for the analysis of a zinc-base and an aluminum 

alloy for copper. 

Since Skogseid's preparation in 1946 of what is generally 

considered to be the first chelating resin (6), many such 

resins have been synthesized. Blasius and Brozio (7), Schmuck-

ler (8), Myasoedova, Eliseeva, and Savvin (9), and Saldadze 

and Kopylova (2) have reviewed much of the work on chelating 

resins. Marhol (10) has reviewed work on ion exchange mate­

rials containing phosphorus, arsenic, or antimony in the func­

tional group. 

Blasius and co-workers have synthesized several chelating 

resins which have proven to be selective for various metal 

ions. A resin based on 2,6-pyridinecarboxylic acid is selec­

tive for alkaline earth metals (11,12). Hydrazide resins 

based on cyclic maleic hydrazide and on dimalyl succinic 

dihydrazide are selective for mercury(I) and mercury(II) and 

for copper(II), respectively (13). Resins with polyaminepoly-

carboxylate functional groups have been used to separate 

binary mixtures of first row transition metals (14). Two 

resins which are selective for zirconium have been synthe­

sized. One is based on catechol-0,0-diacetic acid (15), and 

the other has 1,8-dihydroxynaphthalene-O,0-diacetic acid as 

the functional group (16). A resin based on o-(hydroxyphenyl-

azo) benzoic acid has been prepared (17) and used to separate 

calcium(II) from strontium(II), traces of alkaline earths from 
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solutions having high alkali metal content (18) , traces of 

iron from concentrated salt solutions (19), and beryllium(III) 

from aluminum(III) (20) . Traces of iron have also been separ­

ated from concentrated salt solutions with a resin having 

maleic hydroxamic acid as the functional group (21). 

Myasoedova, Eliseeva, Savvin, and co-workers have pre­

pared chelating resins from several different polymeric 

matrices. Phenol-formaldehyde resins have been used to sorb 

germanium, tantalum, and tungsten from acidic media, and 

uranium, thorium, and tungsten from imitation sea water (22). 

The resins have also been used to concentrate microamounts of 

niobium, tantalum, and beryllium (23). Several resins based 

on cross-linked dextrans have been synthesized (24,25). Some 

show promise for the concentration of palladium, platinum, and 

gold and for their separation from base metals (26). 

A series of resins has been prepared from aminopoly-

styrene which is diazotized and coupled to a variety of re­

agents. The functional groups of these resins include re-

sorcinol azo derivatives (27), the o'-hydroxy-o'-aminoazo 

group (28), several derivatives of chromotropic acid (29,30), 

and the quinclylazcaminc group (31). Resins of that type have 

been applied to the selective sorption of protactinium (32), 

concentration of americium and curium and their separation 

from plutonium and fission products (33), and to the separa­

tion of microamounts of tantalum from niobium (34). 
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Two series of resins having polystyrene-divinylbenzene 

matrices have functional groups analogous to Arsenazo I, £,o'-

dihydroxyazobenzene, 8-hydroxyquinoline, hydroxyphenylarsonic 

acid (35), and to rhodanine, 8-aminoquinoline, 5-amino-8-mer-

captoquinoline, 8-mercaptoquinoline, thiourea (36). Several 

of the resins in the latter group are selective for palladium, 

platinum, rhodium, and gold and can be used to concentrate 

those elements from highly acidic solutions containing large 

amounts of copper, iron, and nickel. 

Chelating resins containing organo-phosphorus groups 

(37), a-dioxime groups (38) , diphenylcarbazide groups (39), 

and pyridylazoresorcyl groups (40) have been synthesized by 

Szczepaniak. The a-dioxime resin is a copolymer of a-furil-

dioxime, phenol, and formaldehyde. It sorbs all cations 

which are complexed by a-furildioxime. The diphenylcarbazide 

resin has been used to separate rhenium(VII) from molybdenum 

(VI), tungsten(VI), vanadium(V), iron(III), and copper(II). 

The pyridylazoresorcinol resin is quite selective for palla-

dium(II) and copper(II). It forms weaker complexes with 

mercury(II), calcium(II), zinc(II), cadmium(II), nickel(II), 

cobalt(II), aluminum(IIi), iron(III), zirconium(rv), and 

thorium(IV). 

Marhol's work has been mainly with phosphorus-containing 

resins and their application to the separation of uranium from 

other metals (41-44). 

Saldadze and co-workers have worked mainly with cation 
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exchangers of the phosphoric acid type (45-47) and with anion 

exchangers of the vinylpyridine type (48-53) , and of the poly-

ethylenepolyamine type (54-60) . 

Several groups of workers have concerned themselves with 

the theoretical aspects of chelating resins as well as with 

the synthesis and application of that type of resin. Theo­

retical work has been done by Gregor, by Hering, by Schmuck-

ler, by Saldadze, by Eger, by Luttrell, and by Brajter. 

Gregor, et al., have put forth four criteria that they 

feel must be met by a chelating group to make it suitable for 

incorporation into a resin (61). 

Hering has proposed a theory of complexation of an imino­

diacetic acid resin and has developed an equation for calcu­

lating dissociation constants of resin-metal complexes for 

divalent metal ions (62) . He has suggested that is a 

function of the acid dissociation constants of the resin and 

the decomplexing pH, i.e., the pK at which the metal ion dis­

sociates from the resin. The decomplexing pH for 22 metal 

ions has been determined for an iminodiacetic acid resin (63). 

Saldadze, e^ ̂ ., have determined the stability of resin-

mo + o 1 n 1 ovoc AT + + 4 r\m + /^-P o 

in the presence and in the absence of metal ions (50,54,57,59). 

It has been found that, in general, the stability of the 

resin-metal complexes is in agreement with the stability of 

the metal complexes with the monomeric reagents. 

The structure of resin-metal complexes has been studied 
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both by potentiometric titration and by infrared spectroscopy 

(45,50,58-60). Kinetics of formation of resin-metal complexes 

has also been studied (55,56), as has the effect of the struc­

ture of the macromolecular framework on the complexing proper­

ties of some of the resins (46,48,52). 

Schmuckler has studied the sorption of lead and copper by 

Dowex A-1, an iminodiacetic acid resin, from various media 

(64). It is found that the presence of complexing agents in 

solution exerts a marked effect on the sorption of metal ions 

by the resin. She suggests that the effect is similar to com­

peting equilibria in homogeneous medium when two or more com­

plexing agents are present. Moreover, she feels that the 

scope of metal separations can be widened by judicious choice 

of complexing agent in an eluent. 

Lowenschuss and Schmuckler have studied the properties of 

Dowex A-1 in contact with aqueous solutions containing metal 

ions complexed with aminocarboxylate ligands. They have 

determined the stability of the resin-metal complexes and the 

structures of the complexes formed by the resin, metal, and 

ligand (65). 

Eger, et al., have studied the coordination behavior of 

cobalt, nickel, copper, and zinc on Dowex A-1 by potentio­

metric titration (66,67). Luttrell, Moore, and Kenner have 

determined the effect of pH and ionic strength on the ion 

exchange and chelating properties of Dowex A-1 with alkaline 

earth ions (68). Brajter has compared the complexing proper­
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ties of Chelex 100, an iminodiacetic acid resin, with those of 

iminodiacetic acid towards cadmium, zinc, and lead (69). 

Schmuckler, in addition to theoretical work with chelat­

ing resins, has been concerned with the synthesis of chelating 

resins and their application to the solution of analytical 

problems. A guanidine resin has been used to separate palla-

dium(II) and platinum(II) chlorides (70), and the platinum 

metals and gold have been separated from base metals by means 

of a benzylisothiouronium resin (71). 

In addition to the concentrated work on chelating resins 

being done by some groups, there is work with such resins 

going on on a more modest scale in a number of other labora­

tories. Hirsch, Gancher, and Russo have synthesized a macro-

reticular iminodiacetic acid resin (72). Davankov has used a 

vinylpyridine copolymer with triethyleneglycol dimethacrylate 

as the basis for preparation of nitrogen-, phosphorus-, and 

sulfur-containing resins having high selectivity for heavy 

metals (73). Egawa and Saeki have synthesized several poly-

amine resins and found that some have high affinity for gold 

(III), mercury(II), and copper(II) (74). Egawa and Takahara 

have prepared chelating resins from methyl methacrylate-

divinylbenzene copolymers (75). A resin with a styrene-

divinylbenzene matrix to which salicylic acid has been bound 

by an azo linkage is found to have a greater affinity for 

copper(II) than for zinc(II) and for zinc(II) than for lead 

(II) (76). Phenolic resins capable of boron complexation have 
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been reported by Kessick (77). Resins selective for silver, 

platinum, palladium, and gold have been prepared by diazotiz-

ing polyaminostyrene and coupling it with rhodanine or thio-

rhodanine (78). Rogozhin, Davankov, and Yamskov have synthe­

sized a series of chelate-forming resins from a-amino acids 

(79). The effects of pH, equilibration time, crosslinking, 

and monomer units have been studied for copper, zinc, and 

nickel on several polyamine-polyurea resins (80). Dithio-

carbamate resins have been used to concentrate traces of 

silver(I), mercury(II), copper(II), antimony(III), lead (II), 

and cadmium(II) (81). 

To date, iminodiacetic acid resins, of all chelating res­

ins synthesized, have found the widest applicability. They 

have been used for the determination of trace elements in sea 

water (82-84) , for the separation of uranium(VI) from other 

metal ions (85). and for the determination of low levels of 

cadmium in foods (86). Chelex 100 has been used as a medium 

for concentrating traces of some elements and, subsequently, 

as a sample matrix for the determination of those elements by 

X-ray fluorescence (87,88). 

Recently, Koster and Schmuckler synthesized a resin which 

can be used to separate noble metals from base metals (71). 

The resin is now commercially available and has been used in 

the determination of gold (89) and for the collection of 

methyl mercury and inorganic mercury (90). 
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EXPERIMENTAL 

Apparatus 

Figure 1 is a schematic diagram of the liquid chromato-

graph used in this work. The eluent delivery system has been 

described previously (91). The detector is a Heath Model 701 

spectrophotometer equipped with a Heath Model Eu-703-01 photo­

metric readout, a Model EU-200-01 potentiometric amplifier, 

and a Model EU-205-11 strip chart recorder. The sample com­

partment of the spectrophotometer is modified so that the 

photomultiplier tube is mounted next to the flow-through cell 

in the sample compartment (92). That modification is neces­

sary to cut decreases in the signal caused by dispersion of 

visible or ultraviolet radiation in passing through the sample 

compartment from the monochromator to the photomultiplier 

compartment. 

Reagent Addition for Detection 

For eluent systems in which the metal ions under study 

do not absorb visible or ultraviolet radiation, a reagent may 

be mixed with the eluate to impart "color" to the metal ion. 

So called "color-forming" reagents may range from 4-(2-

pyridylazo) resorcinol and Arsenazo I to hydrochloric acid. 

The eluate and reagents are mixed in a mixing chamber of the 

whirlpool, divided tangential entry type (93). The relative 

flow rates of eluate and reagent are adjusted by varying the 

lengths of 0.012-in. i.d. Teflon tubing placed in each 
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Figure 1. Schematic diagram of the liquid chromatograph 
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stream. The system may be represented as in Figure 2. 

By analogy with an electrical circuit, one could write 

"Ohm's law" for the system. Pressure would correspond to 

electromotive force, flow rate to current, and resistance to 

liquid flow to electrical resistance. Therefore 

E = iR 

would become 

P = fR 

The branch of the circuit having the column and tubing is 

analogous to an electrical circuit having resistors in series. 

The equivalent resistance would be 

Re = Rc + Rt'-

The circuit containing and R^ is analogous to an electrical 

circuit having resistors in parallel. The relationships among 

flow rates, pressures, and resistances for the circuit may be 

expressed as roiiows; 

But, 

Therefore, 

Pr = f A 

P = Pf = Pe 
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The resistance of the column and of the tubing is deter­

mined by measuring the flow rate through the column or tubing 

as a function of applied pressure. Assuming that the diameter 

of the tubing is uniform, the resistance of the tubing per 

unit length can be calculated. The length of tubing in the 

reagent stream needed to give a certain ratio of flow rates 

can be calculated from the measured values of and R^. 

Tubing is sometimes added to the eluate stream to in­

crease the pressure needed to force eluent through the column 

at a given flow rate. That is done because, for the system 

being used, it is difficult to regulate the pressure when it 

is less than 15 p.s.i.g. 

Using the system described, the eluate and reagent 

streams can be mixed in any ratio needed. By use of a 6-way 

valve, a range of mixing ratios can be achieved without inter­

rupting operation of the chromatograph. 

Preparation of the a-Hydroxy Oxime Resin 

The resin was prepared by John J. Richard according to 

the procedure of Arnold and Fuson (94). 

Phenylglyoxal hydrate, obtained from Columbia Organic 

Chemicals, Inc., was converted to the anhydrous compound by 

distillation. XAD-2, a macroporous, polystyrene-divinylben-

zene copolymer, obtained from the Rohm and Haas Co. was ground 

and sieved. The 250-325 mesh fraction was used in the synthe­

ses . 
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A solution containing 0.8 g of anhydrous phenylglyoxal in 

25 ml of carbon disulfide was added dropwise with stirring to 

13.3 g of anhydrous aluminum trichloride and 5.2 g of XAD-2 

suspended in 50 ml of carbon disulfide in a 200 ml round-

bottomed flask equipped with a dropping funnel and a reflux 

condenser. After addition was completed the mixture was re-

fluxed with stirring for 24 hours. The reaction mixture was 

hydrclyzed by pouring it with stirring over an ice-hydro­

chloric acid mixture. The resin was washed with water then 

with methanol to remove residual aluminum salts and any unre-

acted starting material. 

The resin was oximated by refluxing it overnight with 11 

g of hydroxylamine hydrochloride, 50 ml of pyridine and 50 ml 

of absolute ethanol. Upon completion of reaction, the solvent 

was decanted, and the resin was washed 5 times with water, 

with dilute hydrochloric acid, 5 times with water, and 5 times 

with methanol. A small sample of the resin was dried at 105°C 

and analyzed for nitrogen content. The amount of nitrogen 

found was 1.1%. The theoretical value is 5.5%. 

A second batch of resin was prepared in the same way as 

the first. Nitrogen analysis gave 1.2% nitrogen. 

A third batch of resin was prepared using ethylene di-

chloride in place of carbon disulfide as the solvent for the 

first reaction. The resin was allowed to swell in ethylene 

dichloride for 24 hours prior to carrying out the first step 

of the synthesis. The amount of nitrogen found in the third 
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batch of resin was 3.3%. 

Infrared spectra of the 3 batches of resin were run by 

Tom Lyttle of the Chemistry Department. The spectra are shown 

in Figure 3. The spectra of Batches 1 and 2 of the resin are 

consistent with an aromatic a-hydroxy oxime. The poor resolu­

tion in the spectrum of Batch 3 makes it difficult to draw 

conclusions about the structure. 

Columns 

Chromatronix Model LC-6M-23 columns having an i.d. of 6.3 

mm were used. The columns were packed with methanol slurries 

of the resin from which fines had been decanted. The resin 

was washed free of methanol by passing 50 ml of O.IM acetic 

acid through the columns. 

Reagents 

All chemicals used were reagent grade or better. Solu­

tions of metal ions were prepared from the metal chlorides, 

oxides, or nitrates. The standard stock solutions of copper 

and molybdenum were prepared from 99.99 percent pure metals. 

Evaluation of the Resin 

Distribution coefficients 

Distribution coefficients may be calculated from the 

following equation: 

w 
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Figure 3. Infrared spectra of a-hydroxy oxime resin, Batches 1, 2 and 3, 
top to bottom 
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where is the total retention volume, i.e., the volume of 

eluent entering the column between injection and peak maximum; 

Vj^ is the hold-up volume of the column, i.e., the volume of 

eluent necessary to elute an unretained component; and w is 

the weight of resin in the column. 

was measured for copper(II) and molybdenum(VI) in vari­

ous media. was determined by measuring for chromium(III) 

and iron(III) which should not be retained by the resin. The 

average of the 20 lowest Vp^ values for copper(II), chromium 

(III) , molybdenum(VI) , and iron(III) was taken as Vj^. For 

determination of distribution coefficients on columns contain­

ing Batch 2 or Batch 3 of the resin, Vj^ was taken as the 

average of Vj^ values for chromium(III) and iron(III) with IM 

perchloric acid as the eluent. 

After measurements of V^ were completed, the resin was 

removed from the column and washed with water. 4M hydrochloric 

acid, water, O.IM sodium hydroxide, water, and acetone. It 

was dried under vacuum for 48 hours over anhydrous calcium 

chloride. The dried resin was then weighed. 

For the determination of distribution coefficients 51.4 

pi aliquots of 4x10"" M solutions of metal ions were used. 

The composition of the solvent for each solution was the same 

as that of the eluent flowing through the column. Copper(II), 

chromium(III), and iron(III) were detected by mixing lOM 

hydrochloric acid with the eluate. Iron(III) and chromium(III) 
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were monitored at 225 nm and copper(II) at 275 nm. Molybde­

num (VI) was monitored at 250 nm with no addition of reagent. 

Capacity of resin 

The capacities of the 3 batches of resin were determined 

by stirring a weighed portion of each resin with 60 ml of a 

solution containing copper(II) or molybdenum(VI) and then meas­

uring the amount of copper(II) or molybdenum(VI) remaining in 

solution. The resin and solution were equilibrated for 12 

hours. For copper the solution with which the resin was 

equilibrated was an O.IM acetate solution, pH 4.5, containing 

0.894 mmole of copper(II). The experiment was repeated using 

a solution containing 1.471 mmole of copper(II). The medium 

for molybdenum(VI) was O.IM acetic acid and contained 0.892 

mmole of molybdenum(VI). The amount of copper(II) or molybde­

num (VI) remaining in solution was determined spectrophoto-

metrically using a Gary Model 16 spectrophotometer. 

After each solution was freed of resin by filtration, an 

aliquot was diluted so that the absorbance of the resulting 

solution fell in the range 0.2-0.8. The composition of the 

solvent for copper(II) was 60 percent O.IM acetate and 40 per­

cent concentrated hydrochloric acid. For molybdenum(VI) the 

solvent was O.IM acetic acid. Both metal ions were measured 

at 250 nm. 

Interference studies 

Interference studies for copper(II) were done using a 5.3 
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cm column containing Batch 1 of the resin. For molybdenum(VI) 

a 6.0 cm column of Batch 2 of the resin was used. Solutions 

of copper(II) or molybdenum(VI) plus a test metal ion were 

injected onto the column. Copper(II) or molybdenum(VI) was 

then eluted, and the percentage recovery was determined from 

a calibration curve. If the test metal was found to interfere, 

the concentration was cut by a factor of 10, and the experi­

ment was repeated. 

For the interference studies the concentrations of copper 

(II) and molybdenum(VI) were 2xlO"^M, and a sample loop with a 

volume of 0.969 ml was used. Test solutions for copper(II) 

were in 0.25M tartrate, pH 10, and for molybdenum(VI) in IM 

hydrochloric acid. 

For copper, samples were injected onto a column which had 

been pre-equilibrated for 3 minutes with O.IM acetate, pH 7. 

That eluent was allowed to flow through the column for 3 min­

utes after injection at which time the eluent was changed to 

4M hydrochloric acid to elute the copper. The same time 

sequence was used for molybdenum, but the initial eluent was 

O.IM acetic acid, pH 2.9, and the second eluent was O.IM 

sodium hydroxide. The flow rates were 1.5 ml/min. 

Preparation and Analysis of NBS Samples 

Samples of NBS materials 85A, aluminum alloy, and 94A, 

zinc-base alloy, were dissolved in 20 ml of concentrated 

hydrochloric acid. When dissolution was complete, the solu­
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tions were diluted to 100 ml and 2 ml of 30% hydrogen peroxide 

was added to ensure complete oxidation of copper. The solu­

tions were boiled to destroy excess peroxide. Fifty ml of IM 

sodium tartrate was added to the solutions which were then 

adjusted to pH 10 with sodium hydroxide and diluted to 200 ml 

with water. 

A 5.3 cm column of Batch 1 of the resin was used for the 

analyses. A 0.969 ml sample loop was used. The elution se­

quence was the same as described above for interference 

studies. The percentage of copper in each sample was calcu­

lated from data obtained from a calibration curve prepared by 

sorting and eluting standard samples of copper using the same 

sequence as for the NBS materials. 
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RESULTS AND DISCUSSION 

Choice of Resin 

Complex-forming resins may be prepared from monomeric 

materials or by attaching a complex-forming functional group 

to a polymeric matrix. The first route involves more vari­

ables than the second, but often is easier in terms of synthe­

tic procedure. However, by using the second method, one can 

take advantage of well-characterized, commerically available 

polymeric materials with good physical properties. The dis­

advantage of the second method is that, although it is easy to 

think of groups to attach to the matrix, it is often difficult 

to find a suitable synthetic route to accomplish that. 

For this work, the choice of an a-hydroxy oxime resin is 

based on the straightforward synthesis coupled with knowledge 

of the selectivity of monomeric a-hydroxy oximes for copper 

and molybdenum. 

The matrix to which a-hydroxy oxime groups are added is a 

macroporous, polystyrene-divinylbenzene copolymer. Macro-

porous resins are generally more suitable than gel-type resins 

for use in high pressure systems. The gel-type resins are 

subject to large changes in volume in going from one ionic 

form to another, whereas macroporous resins show very little 

change in volume under similar conditions. In some cases, too, 

macroporous resins have better kinetic characteristics than 

gel resins, i.e., sorption and desorption are more rapid 
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with the macroporous materials. 

Evaluation of the Resin 

Distribution coefficients 

The work of Beuerman (5) indicates that a resin with 

a-hydroxy oxime functional groups might be applicable to the 

separation of copper and molybdenum from other metals. The 

approach to evaluating the resin was to determine distribution 

coefficients for copper(II) and molybdenum(VI) in various 

media, from that data to choose suitable conditions for sepa­

rations, and then by analysis of actual samples and by inter­

ference studies to test the applicability of the resin. 

Distribution coefficients for Batch 1 of the resin are 

shown in Table 1. The data indicate that, in the absence of 

other complexing agents, copper(II) is strongly sorbed by the 

resin from solutions having a pH of 5 or greater and that 

molybdenum(VI) is strongly sorbed over the pH range 1 to 4. 

Table 2 shows a comparison of the distribution coeffi­

cients for the resin with the distribution coefficients for 

5,8-diethyl-7-hydroxydodecanone-6-oxime (DHDO) and 10-hydroxy-

eicosan-9-oxime (HEO) at approximately the same pH values (5). 

It can be seen that for copper, the trend in distribution 

coefficients is the same with the resin as with DHDO and HEO. 

For molybdenum, the maximum distribution coefficient comes at 

a higher pH with the resin than with HEO. 
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Table 1. Distribution coefficients for copper(II) and molyb­
denum (VI) on an a-hydroxy oxime resin 

Eluent Copper(II) Molybdenum(VI) 

pH 10, 0.25M tartrate 4.3 0.3 

pH 8, 0.2SM tartrate 4.8 0 

pH 6, 0.25M tartrate 2.8 0 

pH 7, O.IM acetate > 25 0 

pH 6, O.IM acetate > 25 0 

pH S, O.IM acetate > 25 1.7 

pH 4, O.IM acetate 2.0 15.5 

O.IM acetic acid 0.5 32.5 

0.0IM hydrochloric acid 0 21.7 

O.IM hydrochloric acid 0 17.8 

IM hydrochloric acid 0 1.5 

2M hydrochloric acid 0 1.9 

4M hydrochloric acid 0. 5 3.9 

6M hydrochloric acid 0.6 2.4 

O.OIM perchloric acid 0 13.6 

O.IM perchloric acid 0 6.2 

IM perchloric acid 0 1.2 

2M perchloric acid 0 0.9 

4M perchloric acid 0 0.8 

6M perchloric acid 0 2.1 
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Table 2 . Comparison of distribution coefficients for copper 
and molybdenum for an a-hydroxy oxime resin and for 
DHDO and HEO 

Distribution coefficient 
Eluent pH Resin DHDO HEO 

Copper 

acetate 2.87 

O.IM acetic acid 2.87 

acetate 4.0 

0.IM acetate 4.0 

acetate 4.7 

0,1M acetate 5.0 

0.5 

2 . 0  

> 25 

Molybdenum 

6M H 

6M hydrochloric acid 

4M hydrochloric acid 

IM H"^ 

IM hydrochloric acid 

O.IM H+ 

0.IM hydrochloric acid 

O.OIM H+ 

O.OIM hydrochloric acid 

O.IM acetic acid 2.87 

O.IM acetate 4.0 

2.4 

3.9 

1.5 

17.8 

21.7 

32.5 

15.5 

0.3 

43 

174 

0 . 2  

39 

151 

10 

500 

351 

34 
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Because copper is taken up from alkaline or slightly 

acidic solution, it is necessary to have a complexing agent in 

solution to prevent hydrolysis of most metal ions. Tartrate 

is often used for that purpose and is used in this work. In 

the presence of tartrate, copper is not held as strongly by 

the resin as without tartrate. It is, therefore, necessary 

to work at a higher pH with tartrate present. In solutions 

containing 0.25M tartrate, it is found that if the pH is ad­

justed so that it falls in the range 8 to 10, analyses for 

copper will give the same results. 

As an alternative to tartrate, citrate is found to be too 

strong a complexing agent for use with the resin. Even at pH 

10 copper(II) is not held on the column long enough to allow 

ether metal ions to be separated from it. 

Capacity 

For complex-forming resins, the capacity is a function of 

pH and of the presence of complexing agents in solution. For 

the a-hydroxy oxime resin, it would be difficult to determine 

the capacity for copper(11) under optimum conditions, i.e., 

where copper(II) is sorbed most strongly, because in that pH 

range copper(11) will precipitate in the absence of a complex­

ing agent in solution. Therefore, capacity is determined in 

a solution having a pH of 4.5. 

The capacities of Batches 1, 2, and 3 of the resin are 

found to be 0.058, 0.159, and 0.305 mmole copper(II) per gram 
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o£ resin, respectively, when the solution with which the resin 

is equilibrated contains 0.894 mmole of copper[II). For a 

solution containing 1.471 mmole of copper(II), the capacities 

are 0.119, 0.312, and 0.548 mmole/g. Presumably, upon further 

increase in the initial amount of copper(II) in solution, the 

capacity will increase until the maximum capacity of the resin 

at pH 4.5 is reached. However, that capacity has not been 

determined. 

The capacities of Batches 1, 2, and 3 of the resin are 

found to be 0.159, 0.269, and 0.369 mmole molybdenum(VI) per 

gram of resin, respectively. However, the resin turns blue 

under the conditions used for the experiment indicating either 

reduction of molybdenum(VI) to molybdenum(V) or formation of a 

blue resin-molybdenum(VI) complex. In his work with a-ben-

zoinoxime, Knowles reported some reduction of molybdenum(VI) 

by the reagent (4). Beuerman also reported some reduction of 

molybdenum by DHDO, but not by HEO (5). 

A second experiment run under the same conditions gives 

capacities of 0.098, 0.162, and 0.266 mmole/g, thus indicating 

that some reaction of the resin with molybdenum(VI) does 

occur. The capacity of each batch of resin is decreased by 

approximately the same amount. For Batch 1, the capacity 

determined in the second experiment is 60 percent of that 

found in the first experiment. For Batch 2, it is 62 percent, 

and for Batch 3, it is 72 percent. 
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In column operation over a 2 month period of time, no 

obvious change in column behavior is observed. Therefore, it 

can be assumed that the reaction of molybdenum(VI) with the 

resin occurs only when they are in contact for prolonged 

periods of time. 

From the distribution coefficients in Table 3, it can be 

seen that the distribution coefficient is a function of capac­

ity. That situation is analogous to the increase in distribu­

tion coefficient with the increase in percentage loading of 

the stationary liquid phase in liquid-liquid partition chroma­

tography. 

Choice of Operating Conditions 

Initial eluents are chosen so that copper(11) or molybde­

num (VI) is strongly sorbed by the resin. For copper(II), the 

initial eluent is O.IM acetate, pH 7, and for molybdenum, it 

is O.IM acetic acid, pM 2.9. 

From distribution coefficients it seems that once copper 

is sorbed by the resin, it should be eluted by lowering the pH 

of the eluent to 2 or 3. However, it is found experimentally 

that 4M hydrochloric acid is needed to elute copper rapidly 

and in a tight band. With a solution having a pH of 2, with 

IM hydrochloric acid, or with 2M hydrochloric acid as the 

eluent, the peak height for copper is less than with 4M hydro­

chloric acid as the eluent. The peak is also broader and has 

a shoulder, possibly indicating the presence of more than one 
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Table 3. Distribution coefficients for copper(II) and molyb­
denum (VI) on different batches of an a-hydroxyoxime 
resin 

Eluent Batch 1 Batch 2 Batch 3 

pH 7, O.IM acetate 

pH 4, O.IM acetate 

O.IM acetic acid 

2M hydrochloric acid 

4M hydrochloric acid 

pH 10, 0.25M tartrate 

pH 7, O.IM acetate 

pH 5, O.IM acetate 

pH 4, O.IM acetate 

O.IM acetic acid 

2M hydrochloric acid 

4M hydrochloric acid 

Copper(II) 

>25 >25 

2 . 0  2 . 6  

0.5 0.7 

0 0.4 

0.5 1.0 

4.3 14.9 

Molybdenum (VI) 

0 0 

1.7 6.6 

15.5 >40 

32.5 >40 

1.9 8.3 

3.9 18.0 

>25 

>25 

> 25 

9.8 

>25 

> 25 

0 

>40 

> 40 

>40 

> 25 

> 25 
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complex of copper on the resin, or, alternatively, that there 

is a minimum concentration of acid below which the resin-copper 

complex is not broken up rapidly. 

For molybdenum(VI), O.IM sodium hydroxide is found to be 

a suitable eluent. Eluents having pH values of 6 and 7 do not 

elute molybdenum as rapidly or in as tight a band as O.IM 

sodium hydroxide. Even with O.IM sodium hydroxide as the 

eluent, molybdenum peaks have a slight shoulder. Considering 

the complex chemistry of molybdenum(VI), the shoulder might be 

attributable to equilibria among various molybdenum(VI) species 

in different media. 

Distribution coefficients for copper on Batch 1 and Batch 

2 of the resin do not indicate any particular advantage in 

using one batch over the other. Because preliminary work was 

done using Batch 1, analyses were carried out using that mate­

rial. Distribution coefficients for molybdenum, on the other 

hand, indicate that by using Batch 2, operation in more acidic 

solution should be possible than with Batch 1. That would be 

desirable because of hydrolysis problems. However, when 1 M 

hydrochloric acid is used as the initial eluent, part of the 

molybdenum injected is not held by the resin. If O.IM acetic 

acid is used as the initial eluent, but samples are dissolved 

in IM hydrochloric acid, all of the molybdenum sticks to the 

column until eluted with O.IM sodium hydroxide. 

Although the distribution coefficients for Batch 3 of the 

resin indicate that it should be useful for separations of 
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copper and of molybdenum. Batch 3 was not available until most 

of the work with the resin was completed. A few experiments 

with Batch 3 indicated that O.IM sodium hydroxide would not 

elute molybdenum(VI) rapidly and in a narrow band nor would 

4M hydrochloric acid elute copper rapidly and in a narrow band. 

The 3 minute time span (1.5 ml/min) between injection and 

elution is found to be sufficient to allow several test ele­

ments to pass through the column. For times as long as 8 

minutes between injection and elution, the peak height for 

copper or molybdenum is the same upon elution. 

Detection of copper(II) directly in 4M hydrochloric acid 

is possible, but it is found that peak height on elution for 

repeated injections of the same sample is not very reproduc­

ible. By mixing the eluate with lOM hydrochloric acid in a 

3:2 ratio, good reproducibility of peak height is achieved. 

Chromatograms showing the separation of copper(II) from 

molybdenum(VI) and of molybdenum(VI) from copper(II) using the 

conditions described above are shown in Figures 4 and 5, re­

spectively. 

Linear calibration curves are obtained for copper over 

the concentration range from 1x10 to 4x10 and for molyb-

- 4 - 4 
denum over the range from 2x10 M to 8x10 M. 

Analysis of NBS Materials 

Results of the analyses of 2 NBS materials are shown in 

Table 4. The results are based on the average of three inde­

pendent determinations for each sample. NBS 85A contains 
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LU 0.6 

0 2 4 6 
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PRE-EQUIL!- INJECT CHANGE 
BRATE SAMPLE ELUENT 

TIME (MIN.) 
Figure 4. Separation of molybdenum from copper on a 5.3 cm 

column containing Batch 1 of the a-hydroxy oxime 
resin 
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Figure 5. Separation of copper from molybdenum on a 6.0 cm 

column containing Batch 2.of the a-hydroxy oxime 
resin 
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Table 4. Analysis of NBS alloys for copper 

Sample % Copper, NBS % Copper, found Relative error, % 

NBS 85A, aluminum alloy 2.48 2.47 + 0.01 -0.40 

NBS 94A, zinc-base alloy 1.08 1.07 + 0.02 -0.93 
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aluminum (94 percent), magnesium (1.6 percent), manganese, 

chromium, nickel, silicon, iron (less than 1 percent each), 

and zinc, titanium (less than 0.1 percent each). NBS 94A con­

tains zinc (95 percent), aluminum (3.9 percent), and magnesium, 

manganese, iron, lead, nickel, tin, cadmium (less than 0.1 per­

cent each). 

A third- sample, NBS 54D, tin-base bearing metal, having 

3.62 percent copper, was also analyzed. The small amount of 

lead, 0.6 percent, in the sample caused an error of +20 per­

cent. 

Molybdenum is found in some iron alloys at a level of 1 

or 2 percent. Analysis of several molybdenum steels of that 

type was attempted. The results were neither accurate nor 

reproducible. Both iron and chromium, which is sometimes 

found in such samples, interfere in the determination of 

molybdenum. 

Interferences 

Tables 5 and 6 summarize the interference studies for 

copper and molybdenum. It is apparent that a number of metals 

would interfere in the determination of copper or molybdenum. 

In terms of occurrence, iron is the most serious interference 

for both metals. Chromium, titanium, and vanadium which are 

often found in molybdenum steels are major interferences in 

the determination of molybdenum. Lead is a major interference 

in the determination of copper. 
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Table 5. Interference of metal ions with the determination 
of copper^ 

Metal ion Concentration, M % Recovery of Cu 

Aluminum(III) 

CadmiuKî (II) 

Calcium(II) 

Chromium(III) 

Cobalt(II) 

Iron(III) 

Lead(II) 

Lithium(I) 

Magnesium(II) 

Manganese(II) 

Mercury(II) 

Molybdenum(VI) 

2x10 

2x10' 

2x10 

2x10 

2x10 

2x10 

2x10 

2x10 

2x10 

2x10 

2x10 

2x10 

2x10 

2x10" 

2x10 

2x10 

- 2  

-3 

-3 

-4 

-3 

-4 

-3 

-4 

-4 

- 2  

2x10 

2x10 

2x10 

2x10 

-3 

-4 

90.5 

101.ob 

104.5 

102.5 

99.0 

94.0 

101.OC 

8 8 . 0  

103.5 

114.0 

107.0 

162.5^ 

153.5® 

162.of 

101.0 

99.5 

102.0 

135.Od 

105.0 

99.0 

^Concentration of copper(II) is 2xlO~^M. Column is 5.3 
cm and contains Batch 1 of the resin. 

^2M hydrochloric acid added before adjusting pH. 

^Sorbed from pH 5.5, O.IM acetate medium. 

^Sorbed from pH 8, 0.25M tartrate medium. 

®Sorbed from pH 10, 0.5M tartrate medium. 

Sorbed from pH 7, O.IM acetate medium. 
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Metal ion Concentration, M % Recovery of Cu 

Nickel(II) 2x10"^ 90.0' 

2x10"^ 103.5 

Potassium(I) 2x10'^ 101.5 

Sodixim(I) 2x10"^ 99.5 

Thorium(IV) 2x10"^ 38.0 

2xlO"4 69.5 

Tin(IV) 2x10"^ 100.5 

Uranium(VI) 2x10'^ 116.0 

2xlO"4 105.0 

Zinc(II) 2x10"^ 52.0 

2x10"^ 64.0 
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Table 6. Interference of metal ions with the determination of 
molybdenum^ 

Metal ion Concentration, M % Recovery of Cu 

Aluminum(III) 2x10"^ 112.5 

2xlO"3 102.5 

Bismuth(III) 2x10"^ 108.5b 

Cadmium(II) 2x10"^ 118.5 

2x10"^ 99.0 

Calcium(II) 2x10"^ 98.5 

Chromium(III) 2x10"^ 118.5 

2xlO"4 102.0 

Cobalt(II) 2xlO"2 99.5 

Copper(II) 2x10"^ 102.5 

IronCIII) 2xlO"2 138.0 

2xlO"4 103.0 

Lithium(I) 2x10"^ 99.5 

Lead(II)C 2x10"^ 98.0 

Magnesium(11) 2x10"^ 100.0 

Manganese(II) 2x10"^ 104.5 

2x10'^ 106.5 

Mercury(II) 2x10"^ 248.0 

2x10"^ 99.0 

Nickel(II) 2x10"^ 102.5 

Potassium(I) 2x10"^ 99.5 

Sodium(I) 2x10"^ 99.5 
Tin rt- r " î i iTn  r 
A V  A A  A « J  2x10"^ 98.5 

^Concentrationoof molybdenum(VI) is 2xlO"^M. Column is 
6.0 cm and contains Batch 2 of the resin. 

^Bled off column slowly under conditions used. Column 
washed with 4M hydrochloric acid to remove bismuth completely. 

^LeadClI) sorbed from IM nitric.acid. 
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Table 6. (Continued) 

Metal ion Concentration, M % Recovery of Cu 

Tin(IV) ZxlO'Z 197.5 

2x10"^ 129.5 

Titanium(IV) 2x10"^ 220.0 

2xlO"4 108.5 

Vanadium 2xlO"2 198.0 

2xlO"4 142.0 

Uranium(VI) ZxlO'Z 132.5 

2x10"^ 104.0 

Zinc(II) 2xlO"2 99.0 



www.manaraa.com

41 

Although the data for zinc(II) in Table 5 indicate that 

it would cause low results in the determination of copper, 

that is not found to be the case. NBS 94A has a zinc/copper 

ratio of 95/1, but the results for copper are both accurate 

and precise. 

Beuerman reports no interference from cobalt(II), nickel 

(II), chromium(III), iron(III), zinc(II), cadmium(II), tin(IV), 

molybdenum(VI), palladium(II), lead(II), bismuth(III), thorium 

(IV), mercury(II), vanadium(IV), titaniumCIV), antimony(III), 

uranium(VI), and tungsten(VI) in the liquid-liquid chromato­

graphic determination of copper when HEO is used as the sta­

tionary liquid phase. Of these metal ions, only titanium(IV) 

interferes when DHDO is used. Iron(III), nickel(II), cobalt 

(II), zinc(II), copper(II), tin(IV), tungsten(VI), cadmium(II), 

mercury(II) , and thorium(IV) do not interfere in the determina­

tion of molybdenum when HEO is used. However, in the inter­

ference studies with HEO and DHDO, copper(II) or molybdenum 

(VI) and the other metal ion are present in approximately the 

same amount. No data are available for the case where a metal 

ion may be present in an amount in large excess of copper(II) 

or molybdenum(VI). 

With removal of the constraints imposed by seeking a 

general method, it may be possible to analyze specific samples 

containing copper or molybdenum using conditions different 

from those described here. Thereby, interference from some 

metals may be eliminated. An example can be seen in Table 5. 
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Cobalt(II) in 0.25M tartrate, pH 10 interferes in the deter­

mination of copper when present at 10 times the concentration 

of copper. However, in O.IM acetate, pH 5.5, cobalt(II) does 

not interfere when present at 100 times the concentration of 

copper. 
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CONCLUSIONS 

The synthesis and characterization of an a-hydroxy oxime 

complex-forming resin have been described. Favorable condi­

tions exist for the sorption by and elution from the resin of 

copper(II) and molybdenum(VI). However, under the conditions 

used, several commonly occurring metals interfere in the 

determination of copper or molybdenum, thus limiting the 

utility of the resin. Some alteration of conditions for 

specific samples is indicated as a method for overcoming some 

of the interferences. 

Because alkali metals do not inhibit the sorption of 

copper or molybdenum by the resin, possible applications of 

the resin would be to the removal of traces of copper or 

molybdenum from solutions having a high content of alkali 

metals, and to the concentration of traces of copper or molyb­

denum from solutions with a high salt content. For copper, 

however, the a-hydroxy oxime resin would be no better than 

Dowex A-1. 

The similarity in trends for distribution coefficients 

with the resin and with DHDO and HEO is evidence that the resin 

does, indeed, have a-hydroxy oxime functional groups. Further 

characterization of the resin might include determination of 

the structure and composition of resin-copper and resin-molyb-

denum complexes. Beuerman (5) has found that copper can form 

two complexes with DHDO, a brown complex having a ligand: 
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copper ratio of 2:1 and a green complex with a 1:1 ratio. 

Molybdenum apparently forms only a 1:1 complex. For this 

resin, formation of a 2:1 resin:metal complex would be un­

likely because the low capacity of the resin indicates that 

no two functional groups would be close enough to each other 

to coordinate with copper at the same time. 

In theory, information pertaining to the nature of the 

bonding, i.e., formation of metal-oxygen bonds and/or metal-

nitrogen bonds, should be available from comparison of infra­

red spectra of the resin alone and of the resin-metal com­

plexes . 

An approach to determining the composition of sorbed 

species is indicated by Lowenschuss and Schmuckler (65) who 

have demonstrated the formation of mixed ligand complexes of 

copper(II) and nickel(II) with Dowex A-1 and aminocarboxylate 

ligands. One would expect, then, that in the case where the 

coordination sphere of the metal is not filled by the func­

tional groups of the resin some other species in solution, 

e.g., water, acetate, tartrate, chloride, will also be coor­

dinated with the metal. Thus, the composition of the eluent 

would be expected to have an important effect on the distribu­

tion of metal ions between the resin and eluent. 

Two effects which have to be taken into account with 

complex-forming resins are the effect of sorption by the 

matrix and the steric effect resulting from the functional 
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groups being immobilized on the matrix. XAD-2 shows no tend­

ency to sorb ionic spccies, so for the «-hydroxy oxime resin, 

one would expect no contribution to sorption by the polymeric 

matrix. It is assumed that the functional groups of the a-

hydroxy oxime resin are located on the styrcne rings para to 

the vinyl groups. Presumably, if the functional groups are 

ortho to the vinyl groups, no complexation could take place. 

Saldadze e^ aJ. (48) have shown that to be the case for vinyl-

pyridine resins. 

A theoretical approach, rather than a practical one, to 

the evaluation of complex-forming resins would, in the long 

run, be more fruitful. By determining stability constants and 

the structure of resin-metal complexes, by studying the 

effects of the matrix and of solution composition on complex 

formation, and by devising experiments to elucidate the mech-

anism(s) of sorption, the theory of complex-forming resins can 

be modified and extended. On theoretical grounds, then, one 

would be better able to predict which complex-forming resins, 

i.e., which matrix and which functional group, would have 

utility. 
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FUTURE WORK 

Among compounds that have been used as extractants for 

metal ions, those containing both phosphorus and sulfur are 

found to be quite selective. Handley and Dean have done ex­

tensive work with trialkyl thiophosphates (95) , dialkyl phos-

phorothioates (96), and dialkyl phosphorodithioates (97). 

Cerrai and Ghersini have described a paper chromato­

graphic system in which methyl and ethyl derivatives of p-

nitrophenyl thiophosphate are used as stationary phases (98). 

They are found to extract palladium, silver, cadmium, mercury, 

and gold from nitric acid. 

Elliott and Banks have found tri-n-octylphosphine sulfide 

to be a selective extractant for gold(III), mercury(II), 

silver(I), and palladium(II) (99). 

Solvent extraction data indicate that resins with func­

tional groups analogous to those mentioned above should be 

selective for heavy metals. Moreover, because of the insolu­

bility of the polymeric matrix, studies can be done to deter­

mine the effect of the size of the alkyl groups on the selec­

tivity of the resins. In extraction systems the size of the 

alkyl groups is often dictated by the solubility of the 

extractant in the aqueous phase. With resins the effects of 

small groups such as methyl and ethyl groups as well as of 

large alkyl groups can be tested. 

With complex-forming resins of any type, theoretical 
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studies should be at least as important as the empirical 

determination of the applicability of the resin. Much needs 

to be learned about how complex-forming resins function, i.e., 

about the mechanism(s) of sorption, about the effects of the 

polymeric matrix, about the effects of solution composition, 

and about steric effects. 
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